Davide Gerosa

Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case

Orbital eccentricity in gravitational-wave observations has been long neglected. And with good reasons! Gravitation-wave emission tends to circularize sources. By the time black holes are detectable by LIGO/Virgo/LISA/whatever, they should have had ample time to become circular. Unless something exciting goes on in their formation, things like clusters, triples, Kozai-Lidov oscillations, etc. And if that happens, we want to see it! This paper contains the first model for gravitational waveforms and black-hole remnants (final mass, spin) trained directly on eccentric numerical relativity simulations. Because eccentric is the new circular.

Tousif Islam, Vijay Varma, Jackie Lodman, Scott E. Field, Gaurav Khanna, Mark A. Scheel, Harald P. Pfeiffer, Davide Gerosa, and Lawrence E. Kidder.
Physical Review D 103 (2021) 064022.
arXiv:2101.11798 [gr-qc].

Comments are closed.