Sometimes you have to look into things twice. We found the up-down instability back in 2015 and still did not really understand what was going on. Three out of four black hole binaries with spins aligned to the orbital angular momentum are stable (in the sense that the spins stay aligned), but one is not. The impostors are the “up-down” black holes –binaries where the spin of the big black holes is aligned and the spin of the small black hole is antialigned. These guys are unstable to spin precession: small perturbation will trigger large precession cycles. Matt’s paper today figures out what’s the fate of these runaways. We find that these binaries become detectable in LIGO and LISA with very specific spin configurations: the two spins are aligned with each other and equally misaligned with the orbital angular momentum. There’s a lot of interesting maths in this draft (my first paper with a proof by contradiction!) as well as some astrophysics (for you, AGN disks lover).

Matthew Mould, **Davide Gerosa**.

arXiv:2003.02281 [gr-qc].

Supporting material available here.